题目内容
已知向量m=(sin,1),n=(cos,cos2).
(1)若m·n=1,求cos(-x)的值;
(2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
解:(1)∵m·n=1,即sincos+cos2=1,
即sin+cos+=1,
∴sin(+)=.
∴cos(-x)=cos(x-)=-cos(x+)
=-[1-2sin2(+)]
=2·()2-1=-.
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC.
∴2sinAcosB-cosBsinC=sinBcosC,
∴2sinAcosB=sin(B+C),
∵A+B+C=π,
∴sin(B+C)=sinA,且sinA≠0,
∴cosB=,B=,∴0<A<.
∴<+<,<sin(+)<1.
又∵f(x)=m·n=sin(+)+,
∴f(A)=sin(+)+.
故函数f(A)的取值范围是(1,).
练习册系列答案
相关题目