题目内容

已知函数f(x)=ln(2+3x)-
3
2
x2
(1)求函数y=f(x)的极大值;
(2)令g(x)=f(x)+
3
2
x2+(m-1)x(m为实常数),试判断函数g(x)的单调性;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|+ln[f′(x)+3x]>0均成立,求实数a的取值范围.
分析:(1)求出函数的导函数,由导函数的零点把定义域分段,判断出函数在各区间段内的单调性,从而判出函数的极值点并求出极值;
(2)把函数f(x)的解析式代入后求导,然后对m进行分类,根据m的不同范围分析导函数在不同区间内的符号,从而得到函数g(x)的单调区间;
(3)把函数f(x)的导函数代入不等式|a-lnx|+ln[f′(x)+3x]>0的左侧,根据给出的x的范围得到ln[f′(x)+3x]恒大于等于0,而|a-lnx|恒大于等于0,所以只需把使两者同时为0的a值排除即可.
解答:解:(1)∵f(x)=ln(2+3x)-
3
2
x2,∴函数y=f(x)的定义域为(-
2
3
,+∞
).
f(x)=
3
3x+2
-3x
=
3-9x2-6x
3x+2
=-
9(x+1)(x-
1
3
)
3x+2
=0
,得x=
1
3

当x∈(-
2
3
1
3
)
时,f(x)>0,当x∈(
1
3
,+∞)
时,f(x)<0.
∴y=f(x)在(-
2
3
1
2
]
上为增函数,在[
1
3
,+∞)
上为减函数,
∴函数f(x)的极大值为f(
1
3
)=ln(2+3×
1
3
)-
3
2
×(
1
3
)2=ln3-
1
6

(2)由g(x)=f(x)+
3
2
x2+(m-1)x,
得g(x)=ln(2+3x)+(m-1)x  (x>-
2
3
),
所以g(x)=
3
2+3x
+m-1=
3(m-1)x+2m+1
2+3x

①当m-1=0,即m=1时,g(x)=
3
2+3x
>0
,∴g(x)在(-
2
3
,+∞)
上为增函数;
②当m-1≠0,即m≠1时,g(x)=
3(m-1)x+2m+1
2+3x
=
3(m-1)[x+
2m+1
3(m-1)
]
2+3x

由g(x)=0,得:x=-
2m+1
3(m-1)
,∵-
2m+1
3(m-1)
-(-
2
3
)=-
1
m-1

∴1°若m>1,则-
1
m-1
<0
-
2m+1
3(m-1)
<-
2
3
,∴x>-
2
3
时,g(x)>0,∴g(x)在(-
2
3
,+∞)
上为增函数;
2°若m<1,则-
2m+1
3(m-1)
>-
2
3
,∴当x∈(-
2
3
,-
2m+1
3(m-1)
)
时,g(x)>0;当x∈(-
2m+1
3(m-1)
,+∞)
时,
g(x)<0,∴g(x)在(-
2
3
,-
2m+1
3(m-1)
]
上为增函数,在[-
2m+1
3(m-1)
,+∞)
上为减函数.
综上可知,当m≥1时,g(x)在(-
2
3
,+∞)
上为增函数;
当m<1时,g(x)在(-
2
3
,-
2m+1
3(m-1)
]
上为增函数,在[-
2m+1
3(m-1)
,+∞)
上为减函数.
(3)∵f(x)=
3
2+3x
-3x

由|a-lnx|+ln[f(x)+3x]>0,得:|a-lnx|+ln
3
2+3x
>0

∵x∈[
1
6
1
3
]
,∴0≤ln
3
2+3x
≤ln
6
5
,而|a-lnx|≥0,
∴要对任意x∈[
1
6
1
3
]
,不等式|a-lnx|+ln[f(x)+3x]>0均成立,
ln
3
2+3x
与|a-lnx|不同时为0.
因当且仅当x=
1
3
时,ln
3
2+3x
=0,所以为满足题意必有|a-ln
1
3
|≠0
,即a≠ln
1
3

故对任意x∈[
1
6
1
3
]
,不等式|a-lnx|+ln[f′(x)+3x]>0均成立的实数a的取值范围是{a|a≠ln
1
3
}.
点评:本题考查了利用导数研究函数的单调性,考查了函数在某点取得极值的条件,考查了函数恒成立问题,连续函数在定义域内某点的两侧的单调性不同,则该点是函数的极值点,此题是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网