题目内容

(本大题满分12分)
已知点A(-1,0)、B(1,0)和动点M满足:,且,动点M的轨迹为曲线C,过点B的直线交CPQ两点.
(1)求曲线C的方程;
(2)求△APQ面积的最大值.




(1)解:设M (xy),在△MAB中,| AB | = 2,


                       

因此点M的轨迹是以AB为焦点的椭圆,a = 2,c = 1
∴曲线C的方程为.                                                                               

(2)解法一:设直线PQ方程为 (∈R)
得:                                                           

显然,方程①的,设P(x1y1),Q(x2y2),则有

                                                          

,则t≥3,                                                            

由于函数在[3,+∞)上是增函数,∴
,即S≤3
∴△APQ的最大值为3                                                                                              

解法二:设P(x1y1),Q(x2y2),则
当直线PQ的斜率不存在时,易知S = 3
设直线PQ方程为
  得:  ①                                        
显然,方程①的△>0,则
                                   

                                    
,则,即S<3

∴△APQ的最大值为3                                                                                              

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网