题目内容
(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是( )
分析:函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=loga|x|的图象,结合图象可得loga5<1 或 loga5≥-1,由此求得a的取值范围.
解答:解:函数g(x)=f(x)-loga|x|的零点个数,即函数y=f(x)与y=loga|x|的交点的个数;
由f(x+1)=-f(x),可得f(x+2)=f(x+1+1)=-f(x+1)=f(x),
故函数f(x)是周期为2的周期函数,
又由当-1≤x<1时,f(x)=x3,据此可以做出f(x)的图象,
y=loga|x|是偶函数,当x>0时,y=logax,则当x<0时,y=loga(-x),做出y=loga|x|的图象,
结合图象分析可得:要使函数y=f(x)与y=loga|x|至少有6个交点,
则 loga5<1 或 loga5≥-1,解得 a>5,或 0<a≤
,
故选A.
由f(x+1)=-f(x),可得f(x+2)=f(x+1+1)=-f(x+1)=f(x),
故函数f(x)是周期为2的周期函数,
又由当-1≤x<1时,f(x)=x3,据此可以做出f(x)的图象,
y=loga|x|是偶函数,当x>0时,y=logax,则当x<0时,y=loga(-x),做出y=loga|x|的图象,
结合图象分析可得:要使函数y=f(x)与y=loga|x|至少有6个交点,
则 loga5<1 或 loga5≥-1,解得 a>5,或 0<a≤
1 |
5 |
故选A.
点评:本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数.
练习册系列答案
相关题目