题目内容
4.数列{an}满足a1=1,a2=3,an+2=an+1-an,n∈N*,则a2015=-3.分析 先分别求出{an}的前9项,观察这9项知an是周期为6的周期函数,由此可得结论.
解答 解:∵a1=1,a2=3,an+2=an+1-an(n∈N*),
∴a3=3-1=2,
a4=2-3=-1,
a5=-1-2=-3,
a6=-3+1=-2,
a7=-2+3=1,
a8=1+2=3,
a9=3-1=2,
…
∴an是周期为6的周期函数,
∵2015=335×6+5,
∴a2015=-3.
故答案为:-3.
点评 本题考查数列递推式,找出周期性是解决本题的关键,属于中档题.
练习册系列答案
相关题目
12.某校为了调查“学业水平考试”学生的数学成绩,随机地抽取该校甲、乙两班各10名同学,获得的数据如下:(单位:分)
甲:132,108,112,121,113,121,118,127,118,129;
乙:133,107,120,113,121,116,126,109,129,127.
(1)以百位和十位为茎,个位为叶,在图5中作出以上抽取的甲、乙两班学生数学成绩的茎叶图,求出这20个数据的众数,并判断哪个班的平均水平较高;
(2)将这20名同学的成绩按下表分组,现从第一、二、三组中,采用分层抽样的方法抽取6名同学成绩作进一步的分析,求应从这三组中各抽取的人数.
甲:132,108,112,121,113,121,118,127,118,129;
乙:133,107,120,113,121,116,126,109,129,127.
(1)以百位和十位为茎,个位为叶,在图5中作出以上抽取的甲、乙两班学生数学成绩的茎叶图,求出这20个数据的众数,并判断哪个班的平均水平较高;
(2)将这20名同学的成绩按下表分组,现从第一、二、三组中,采用分层抽样的方法抽取6名同学成绩作进一步的分析,求应从这三组中各抽取的人数.
组别 | 第一 | 第二 | 第三 | 第四 |
分值区间 | [100,110) | [110,120) | [120,130) | [130,140] |
15.${({{x^2}-\frac{1}{x}})^n}$展开式的二项式系数和为64,则其常数项为( )
A. | -20 | B. | -15 | C. | 15 | D. | 20 |
16.若复数z满足z+2=(z-2)•i,则复数z的共轭复数$\overline{z}$=( )
A. | -2i | B. | 2i | C. | 2+I | D. | 2-i |
13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列{an},则该数列的通项公式为( )
A. | an=$\frac{n-1}{2}$ | B. | an=n-1 | C. | an=(n-1)2 | D. | an=2n-2 |
14.向量$\overrightarrow{a}$=(2,-9),向量$\overrightarrow{b}$=(-3,3),则与$\overrightarrow{a}$-$\overrightarrow{b}$同向的单位向量为( )
A. | ($\frac{5}{13}$,-$\frac{12}{13}$) | B. | (-$\frac{5}{13}$,$\frac{12}{13}$) | C. | ($\frac{12}{13}$,-$\frac{5}{13}$) | D. | (-$\frac{12}{13}$,$\frac{5}{13}$) |