题目内容

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①求函数f(x)的解析式;
②判断函数f(x)在(-1,1)上的单调性并用定义证明;
③解关于x的不等式f(log2x-1)+f(log2x)<0.
分析:①直接根据f(0)=0以及f(
1
2
)=
2
5
,得到关于a,b的两个等式,求出a,b的值即可得到函数f(x)的解析式;
②直接利用单调性的定义证明即可得到证明其单调性;
③令log2x=t,直接利用其为奇函数把不等式转化为f(t-1)<f(-t);再根据其单调性即可得到不等式的解集.
解答:解:①依题意得
f(0)=0
f(
1
2
)=
2
5
,即
b=0
1
2
a+b
1+
1
4
=
2
5
,解得:
a=1
b=0

∴f(x)=
x
1+x2

②f(x)在(-1,1)上是增函数,
证明如下:任取-1<x1<x2<1,
则f(x1)-f(x2)=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)

∵-1<x1<x2<1
∴x1-x2<0,1-x1x2>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)在(-1,1)上是增函数.
③令log2x=t,则不等式f(log2x-1)+f(log2x)<0,
转化为f(t-1)+f(t)<0⇒f(t-1)<-f(t)=f(-t).
∵f(x)在(-1,1)上是增函数;
∴-1<t-1<-t<1⇒0<t<
1
2

∴0<log2x
1
2
⇒1<x<
2

∴不等式f(log2x-1)+f(log2x)的解集为(1,
2
).
点评:本题主要考察对数函数图象与性质的综合应用.解决问题的关键在于根据奇函数定义域内有0得到f(0)=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网