题目内容
(2006•重庆二模)用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.
分析:(Ⅰ)确定ξ~B(4,0.5),η~B(3,0.5),即可求ξ和η的期望;
(Ⅱ)确定ξ和η,取值时的概率,结合题意,即可得到结论.
(Ⅱ)确定ξ和η,取值时的概率,结合题意,即可得到结论.
解答:解:(Ⅰ)由题意,ξ~B(4,0.5),η~B(3,0.5),
所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)
(Ⅱ)P(ξ=1)=
(
)4=
,P(ξ=2)=
(
)4=
,P(ξ=3)=
(
)4=
,P(ξ=4)=
(
)4=
P(η=0)=
(
)3=
,P(η=1)=
(
)3=
,P(η=2)=
(
)3=
,
P(η=3)=
(
)3=
…(8分)
甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3
则甲获胜的概率为P=
×
+
(
+
)+
(
+
+
)+
×1=
.…(13分)
所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)
(Ⅱ)P(ξ=1)=
C | 1 4 |
1 |
2 |
1 |
4 |
C | 2 4 |
1 |
2 |
3 |
8 |
C | 3 4 |
1 |
2 |
1 |
4 |
C | 4 4 |
1 |
2 |
1 |
16 |
P(η=0)=
C | 0 3 |
1 |
2 |
1 |
8 |
C | 1 3 |
1 |
2 |
3 |
8 |
C | 2 3 |
1 |
2 |
3 |
8 |
P(η=3)=
C | 3 3 |
1 |
2 |
1 |
8 |
甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3
则甲获胜的概率为P=
1 |
4 |
1 |
8 |
3 |
8 |
1 |
8 |
3 |
8 |
1 |
4 |
1 |
8 |
3 |
8 |
3 |
8 |
1 |
16 |
1 |
2 |
点评:本题考查概率的计算,考查学生分析解决问题的能力,考查学生的计算那就,属于中档题.
练习册系列答案
相关题目