题目内容

(2006•重庆二模)在△ABC中,lgsinA,lgsinB,lgsinC成等差数列,是三边a,b,c成等比数列的(  )
分析:先由条件lgsinA,lgsinB,lgsinC成等差数列推出sinA,sinB,sinC的关系,然后利用正弦定理判断和a,b,c的关系.从而确定是充分条件还是必要条件.
解答:解:在△ABC中,若lgsinA,lgsinB,lgsinC成等差数列,则lgsinA+lgsinC=2lgsinB,即lgsinAsinC=lgsin2B,所以sinAsinC=sin2B,
由正弦定理得ac=b2,所以三边a,b,c成等比数列.
若三边a,b,c成等比数列,则ac=b2,由正弦定理得sinAsinC=sin2B,所以lgsinA+lgsinC=lgsinAsinC=lgsin2B=2lgsinB,
所以lgsinA,lgsinB,lgsinC成等差数列.
所以在△ABC中,lgsinA,lgsinB,lgsinC成等差数列,是三边a,b,c成等比数列的充要条件.
故选C.
点评:本题的考点是充分条件和必要条件的判断.要求熟练找我判断充要条件的方法:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网