题目内容
【题目】下列四组函数中,表示相等函数的一组是( )
A.f(x)=|x|,
B. ,
C. ,g(x)=x+1
D. ,
【答案】A
【解析】解:A.函数g(x)= =|x|,两个函数的对应法则和定义域相同,是相等函数.
B.函数f(x)= =|x|,g(x)=x,两个函数的对应法则和定义域不相同,不是相等函数.
C.函数f(x)=x+1的定义域为{x|x≠1},两个函数的定义域不相同,不是相等函数.
D.由 ,解得x≥1,即函数f(x)的定义域为{x|x≥1},
由x2﹣1≥0,解得x≥1或x≤﹣1,即g(x)的定义域为{x|x≥1或x≤﹣1},两个函数的定义域不相同,不是相等函数.
故选:A.
【考点精析】认真审题,首先需要了解判断两个函数是否为同一函数(只有定义域和对应法则二者完全相同的函数才是同一函数).
【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如下数据:
手机品牌 型号 | I | II | III | IV | V |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手机品牌 红包个数 | 优 | 非优 | 合计 |
甲品牌(个) | |||
乙品牌(个) | |||
合计 |
(1)如果抢到红包个数超过5个的手机型号为“优”,否则为“非优”,请完成上述2×2列联表,据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(2)如果不考虑其他因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号I被选中的条件下,型号II也被选中的概率;
②以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: ,其中.