题目内容
【题目】从8名运动员中选4人参加米接力赛,在下列条件下,各有多少种不同的排法?
(1)甲、乙两人必须入选且跑中间两棒;
(2)若甲、乙两人只有一人被选且不能跑中间两棒;
(3)若甲、乙两人都被选且必须跑相邻两棒;
(4)甲不在第一棒.
【答案】(1)60;(2)480;(3)180;(4)1470
【解析】
(1)先选好参赛选手,再安排好甲、乙两人,再安排剩余两人,相乘得到结果;(2)先确定参赛选手,共有种选法;再安排好甲或乙,继续安排好剩余三人,相乘得到结果;(3)先选好参赛选手,再用捆绑法求得结果;(4)先安排好第一棒,再安排好其余三棒,相乘得到结果.
(1)除甲、乙外还需选择人参加接力赛共有种选法
则甲、乙跑中间两棒共有种排法;另外人跑另外两棒共有种排法
甲、乙两人必须入选且跑中间两棒共有:种排法
(2)甲、乙只有一人入选且选另外选人参加接力赛共有种选法
甲或乙不跑中间两棒共有种排法;其余人跑剩余三棒共有种排法
甲、乙两人只有一人被选且不能跑中间两棒共有:种排法
(3)除甲、乙外还需选择人参加接力赛共有种选法
甲乙跑相邻两棒,其余人跑剩余两棒共有种排法
甲、乙两人都被选且必须跑相邻两棒共有:种排法
(4)甲不在第一棒则需选择一人跑第一棒,共有种选法
其余三棒共有种排法
甲不在第一棒共有种排法
练习册系列答案
相关题目