题目内容
(2012•雁江区一模)已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
所表示的平面区域内,求实数a的取值范围.
(Ⅲ)求证:(1+
)(1+
)(1+
)•…•[1+
]<e(其中n∈N*,e是自然对数的底数).
(Ⅰ)当a=-
1 |
4 |
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
|
(Ⅲ)求证:(1+
2 |
2×3 |
4 |
3×5 |
8 |
5×9 |
2n |
(2n-1+1)(2n+1) |
分析:(Ⅰ)把a=-
代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;
(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在
所表示的平面区域内,将问题转化为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,只要求出ax2+ln(x+1)-x的最小值即可,令新的函数,利用导数研究其最值问题;
(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;
1 |
4 |
(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在
|
(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;
解答:解:(Ⅰ)当a=-
时,f(x)=-
x2+ln(x+1)(x>-1),
f′(x)=-
x+
=-
(x>-1),
由f'(x)>0解得-1<x<1,由f'(x)<0,
解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).(4分)
(Ⅱ)因函数f(x)图象上的点都在
所表示的平面区域内,
则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),
只需g(x)max≤0即可.(5分)
由g′(x)=2ax+
-1=
,
(ⅰ)当a=0时,g′(x)=
,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.(6分)
(ⅱ)当a>0时,由g′(x)=
=0,因x∈[0,+∞),所以x=
-1,
①若
-1<0,即a>
时,在区间(0,+∞)上,g'(x)>0,
则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
-1≥0,即0<a≤
时,函数g(x)在(0,
-1)上单调递减,在区间(
-1,+∞)上单调递增,
同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)
(ⅲ)当a<0时,由g′(x)=
,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].(10分)
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立
(或另证ln(x+1)≤x在区间(-1,+∞)上恒成立),(11分)
又
=2(
-
),
∵ln{(1+
)(1+
)(1+
)•…•[1+
]}
=ln(1+
)+ln(1+
)+ln(1+
)+…+ln[1+
]<
+
+
+…+
=2[(
-
)+(
-
)+(
-
)+…+(
-
)]
=2[(
-
)]<1,
∴(1+
)(1+
)(1+
)•…•[1+
]<e.(14分)
1 |
4 |
1 |
4 |
f′(x)=-
1 |
2 |
1 |
x+1 |
(x+2)(x-1) |
2(x+1) |
由f'(x)>0解得-1<x<1,由f'(x)<0,
解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).(4分)
(Ⅱ)因函数f(x)图象上的点都在
|
则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),
只需g(x)max≤0即可.(5分)
由g′(x)=2ax+
1 |
x+1 |
x[2ax+(2a-1)] |
x+1 |
(ⅰ)当a=0时,g′(x)=
-x |
x+1 |
故g(x)≤g(0)=0成立.(6分)
(ⅱ)当a>0时,由g′(x)=
x[2ax+(2a-1)] |
x+1 |
1 |
2a |
①若
1 |
2a |
1 |
2 |
则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
1 |
2a |
1 |
2 |
1 |
2a |
1 |
2a |
同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)
(ⅲ)当a<0时,由g′(x)=
x[2ax+(2a-1)] |
x+1 |
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].(10分)
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立
(或另证ln(x+1)≤x在区间(-1,+∞)上恒成立),(11分)
又
2n |
(2n-1+1)(2n+1) |
1 |
2n-1+1 |
1 |
2n+1 |
∵ln{(1+
2 |
2×3 |
4 |
3×5 |
8 |
5×9 |
2n |
(2n-1+1)(2n+1) |
=ln(1+
2 |
2×3 |
4 |
3×5 |
8 |
5×9 |
2n |
(2n-1+1)(2n+1) |
2 |
2×3 |
4 |
3×5 |
8 |
5×9 |
2n |
(2n-1+1)(2n+1) |
=2[(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
9 |
1 |
2n-1+1 |
1 |
2n+1 |
=2[(
1 |
2 |
1 |
2n+1 |
∴(1+
2 |
2×3 |
4 |
3×5 |
8 |
5×9 |
2n |
(2n-1+1)(2n+1) |
点评:此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题实质还是函数的恒成立问题,第三问不等式的证明仍然离不开前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题;
练习册系列答案
相关题目