题目内容

如图,平面内的定点F到定直线l的距离为2,定点E满足:||=2且EF⊥l于G,点Q是直线l上一动点,点M满足,点P满足=0.

(1)建立适当的直角坐标系,求动点P的轨迹方程;

(2)若经过点E的直线l1与点P的轨迹交于相异两点A、B,令∠AFB=θ,当4π≤θ≤π时,求直线l1的斜率k的取值范围.

解:(1)以FG的中点为原点,以EF为y轴建立直角坐标系xOy.设P(x,y),

则F(0,1)、E(0,3),l:y=-1.                                                   

,,∴Q(x,-1),M(,0).

=0,∴()·x+(-y)(-2)=0,

即所求点P的轨迹方程为x2=4y.                                                

(2)设A(x1,y1),B(x2,y2)(x1≠x2),该直线l的方程为y=kx+3.

,得x2-4kx-12=0,∴x1+x2=4k,x1·x2=-12.

∴y1·y2==9,y1+y2=k(x1+x2)+6=4k2+6,

=(x1,y1-1),=(x2,y2-1),

·=x1x2+y1y2-(y1+y2)+1=-4k2-8.

而||·||=(y1+1)(y2+1)=y1·y2+(y1+y2)+1=4k2+16,

∴cosθ=,

≤θ≤π,-1≤cosθ≤,

即-1≤,∴k2.

解得k≥或k≤.

∴直线l1的斜率k≥或k≤.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网