题目内容
(本小题满分14分)数列
满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316086709.png)
.
(Ⅰ)若
是等差数列,求其通项公式;
(Ⅱ)若
满足
,
为
的前
项和,求
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316071480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316086709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316102603.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316071480.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316071480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316242417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316273388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316071480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316305297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316320468.png)
解:(I)由题意得
…①
…②.
②-①得
,∵{
}是等差数列,设公差为d,∴d=2, ………….4分
∵
∴
,∴
,∴
…….……….…7分
(Ⅱ)∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316695450.png)
,∴
….…………………….………8分
又∵
,∴数列的奇数项与偶数项分别成等差数列,公差均为4
∴
,
….………………………….……….……………………11分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053169131415.png)
=
=
….….……….……14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316336695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316367730.png)
②-①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316383566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316398360.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316414492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316617543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316632494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316663683.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316695450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316414492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316835419.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316383566.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316851670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316866647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053169131415.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232053169751512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205316991569.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目