题目内容
19.若对?x,y∈[0,+∞),不等式4ax≤ex+y-2+ex-y-2+2恒成立,则实数a的最大值是( )A. | $\frac{1}{4}$ | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
分析 利用基本不等式和参数分离可得a≤$\frac{1+{e}^{x-2}}{2x}$在x>0时恒成立,构造函数g(x)=$\frac{1+{e}^{x-2}}{2x}$,通过求导判断单调性求得g(x)的最小值即可得到a的最大值.
解答 解:当x=0时,不等式即为0≤ey-2+e-y-2+2,显然成立;
当x>0时,设f(x)=ex+y-2+ex-y-2+2,
不等式4ax≤ex+y-2+ex-y-2+2恒成立,
即为不等式4ax≤f(x)恒成立.
即有f(x)=ex-2(ey+e-y)+2≥ex-2•2$\sqrt{{e}^{y}•{e}^{-y}}$+2=2+2ex-2(当且仅当y=0时,取等号),
由题意可得4ax≤2+2ex-2,
即有a≤$\frac{1+{e}^{x-2}}{2x}$在x>0时恒成立,
令g(x)=$\frac{1+{e}^{x-2}}{2x}$,g′(x)=$\frac{2x{e}^{x-2}-2(1+{e}^{x-2})}{4{x}^{2}}$,
令g′(x)=0,即有(x-1)ex-2=1,
令h(x)=(x-1)ex-2,h′(x)=xex-2,
当x>0时h(x)递增,
由于h(2)=1,即有(x-1)ex-2=1的根为2,
当x>2时,g(x)递增,0<x<2时,g(x)递减,
即有x=2时,g(x)取得最小值,为$\frac{1+1}{4}=\frac{1}{2}$,
则有a≤$\frac{1}{2}$.
当x=2,y=0时,a取得最大值$\frac{1}{2}$.
故选:D
点评 本题考查不等式恒成立问题注意转化为求函数的最值问题,运用参数分离和构造函数运用导数判断单调性是解题的关键.
练习册系列答案
相关题目
10.已知函数f(x)=$\frac{1}{3}$x3+mx2+(2m+3)x(m∈R)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=$\frac{1}{5}$上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )
A. | [0,2] | B. | [0,3] | C. | [0,$\frac{2\sqrt{5}}{5}$) | D. | [0,$\frac{3\sqrt{5}}{5}$) |
14.椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点都在坐标原点O,点F是椭圆C1的右焦点,点M位于x轴上方且在抛物线C2的准线上,已知曲线C1:C2上各有两点,其坐标关系如下表:
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以线段OM为直径且被直线5x+12y-9=0截得的弦长为4的圆C的方程;
(Ⅲ)过点F斜率为k(k≠0)的直线l与C1交于P、Q两点,与圆C交于A、B两点.问:是否存在直线l,使得线段PQ与线段AB有相同的中点?请说明理由.
x | -4 | -1 | -$\frac{1}{2}$ | 0 |
y | -8 | $\frac{3}{2}$ | 2$\sqrt{2}$ | $\sqrt{3}$ |
(Ⅱ)求以线段OM为直径且被直线5x+12y-9=0截得的弦长为4的圆C的方程;
(Ⅲ)过点F斜率为k(k≠0)的直线l与C1交于P、Q两点,与圆C交于A、B两点.问:是否存在直线l,使得线段PQ与线段AB有相同的中点?请说明理由.
4.已知函数f(x)=x|x-a|+2x,若存在a∈[-4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围为( )
A. | (1,$\frac{9}{8}$) | B. | (1,$\frac{9}{7}$) | C. | ($\frac{9}{7}$,$\frac{3}{2}$) | D. | ($\frac{9}{8}$,$\frac{3}{2}$) |