题目内容
【题目】已知函数
(1)讨论函数的单调性;
(2)若函数与的图象有两个不同的交点
(i)求实数a的取值范围
(ii)求证:且为自然对数的底数).
【答案】(1) 当时,函数在上单调递增;
当时, 函数的单调递增区间为,单调递减区间为.
(2)(i) (ii)证明见解析.
【解析】
(1),对分类讨论:,利用导数的正负号研究函数的单调性;
(2)(i)由(1)可知,当时单调,不存在两个零点,当时,可求得有唯一极大值,令其大于零,可得到的范围,再判断极大值点左右两侧附近的函数值小于零即可;
(ii)构造函数,根据函数的单调性证明即可.
由题意知,所以.
当时, ,函数在上单调递增;
当时,令,解得;
令,解得;
所以函数在上单调递增,在上单调递减.
综上所述:当时,函数在上单调递增;
当时, 函数的单调递增区间为,单调递减区间为.
(2)(i) 函数与的图象有两个不同的交点等价于函数有两个不同的零点,其中.
由(1)知, 当时,函数在上单调递增;不可能有两个零点.
当时, 函数在上单调递增,在上单调递减,此时为函数的最大值.
当时,最多有一个零点,
所以,解得
此时,,且,.
令,
则,
所以在上单调递增,
所以即,
所以的取值范围是.
(ii)因为在上单调递增,在上单调递减,
所以,,
所以,即,所以.
构造函数
,
则,
所以在上单调递减,
又因为,
所以,
因为
所以,又
所以
由(1)知在上单调递减得:即
又因为,所以
即,
又因为,所以
所以.
【题目】小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:
所需时间(分钟) | 30 | 40 | 50 | 60 |
线路一 | 0.5 | 0.2 | 0.2 | 0.1 |
线路二 | 0.3 | 0.5 | 0.1 | 0.1 |
则下列说法正确的是( )
A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,线路一比线路二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走线路一
D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04