题目内容
某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)经计算,相关指数,你可得到什么结论?
(参考数值:2×30+4×40+5×50+6×60+8×70==1390)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | 60 | 70 |
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)经计算,相关指数,你可得到什么结论?
(参考数值:2×30+4×40+5×50+6×60+8×70==1390)
(1)详见解析;(2)=7x+15;(3)详见解析.
试题分析:(1)根据表格中的数据,易得散点图;(2)根据线性回归分析中的相关公式,, ,将表格中的数据代入,即可得到线性回归方程为=7x+15;(3)相关指数R2是描述模拟效果好坏的一个量,它的值越接近于1,拟合效果越好,
而对应的残差平方和就越小,在选择模型时,一般选择相关系大的模型,.
(1)根据条件中所给数据易得散点图如下图所示
4分
(2)根据表格中数据,,
8分
=15, 10分
∴线性回归方程为=7x+15. 11分
(3)本题要求学生根据相关指数R2的意义回答问题,结论叙述可以多样,如:
①相关指数R2接近1,说明模型拟合效果好;
②表明残差平方和接近0,说明模型拟合效果好;
③表明“解析变量和预报变量的线性相关性强”;
④表明“广告费支出解析了98%的销售额变化。而随机误差贡献了2%”,所以广告费支出
对销售额的效应比随机误差的效应大得多. 14分.
练习册系列答案
相关题目