题目内容

20.已知f(x)是一次函数,且f[f(x)]=4x-9,求函数f(x)的解析式.

分析 f(x)=ax+b,a≠0,代入已知式子,比较系数可得a、b的方程组,解之可得解析式.

解答 解:由题意设f(x)=ax+b,a≠0
∵f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b
又f[f(x)]=4x-9,
∴a2x+ab+b=4x-9,
比较系数可得a2=4且ab+b=-9
解得a=2,b=-3或a=-2,b=9.
∴f(x)=2x-3或f(x)=-2x+9.

点评 本题考查函数解析式的求解,涉及待定系数法,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网