题目内容

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲
403
397
390
404
388
400
412
406
品种乙
419
403
412
418
408
423
400
413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
(1)X的分布列为
X
0
1
2
3
4
P





2
(2)应该选择种植品种乙

解:(1)X可能的取值为0,1,2,3,4,
且P(X=0)=,P(X=1)=
P(X=2)=,P(X=3)=
P(X=4)=.即X的分布列为
X
0
1
2
3
4
P





X的数学期望是:
E(X)=0×+1×+2×+3×+4×=2.
(2)品种甲的每公顷产量的样本平均数和样本方差分别为:
甲= (403+397+390+404+388+400+412+406)=400,
S2甲= (32+(-3)2+(-10)2+42+(-12)2+02+122+62)=57.25.
品种乙的每公顷产量的样本平均数和样本方差分别为:
乙= (419+403+412+418+408+423+400+413)=412,
S2乙= (72+(-9)2+02+62+(-4)2+112+(-12)2+12)=56.
由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网