题目内容
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
分析:写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件.
解答:解:设{a
n}的公差为d,由题意得
a
1+a
3+a
5=a
1+a
1+2d+a
1+4d=105,即a
1+2d=35,①
a
2+a
4+a
6=a
1+d+a
1+3d+a
1+5d=99,即a
1+3d=33,②
由①②联立得a
1=39,d=-2,
∴s
n=39n+
×(-2)=-n
2+40n=-(n-20)
2+400,
故当n=20时,S
n达到最大值400.
故选B.
点评:求等差数列前n项和的最值问题可以转化为利用二次函数的性质求最值问题,但注意n取正整数这一条件.
练习册系列答案
相关题目