题目内容
已知y=f(x)的定义域为R,其图象是由两条射线和二次函数图象的一部分构成,其中(0,2)顶点,如图所示
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求
的值.
解:(I)当x≤-1时,设f(x)=kx+b
则由图象可知,
,解可得![](http://thumb.zyjl.cn/pic5/latex/7168.png)
∴f(x)=x+2(x≤-1)
当x≥1时,设f(x)=mx+n
由图象可得,
,解可得![](http://thumb.zyjl.cn/pic5/latex/313537.png)
∴f(x)=-x+2
当-1<x<1,设f(x)=ax2+2
∵f(1)=a+2=1
∴a=1
∴![](http://thumb.zyjl.cn/pic5/latex/543355.png)
(2)∵f(
)=
=![](http://thumb.zyjl.cn/pic5/latex/13.png)
∴f[f(
)]=f(
)=
=![](http://thumb.zyjl.cn/pic5/latex/1653.png)
分析:(I)结合图象可知,当x≤-1,x≥1时,函数为一次函数,设出函数的解析式,由函数图象所经过的点的坐标求解即可;当-1<x<1,函数为开口向下,对称轴为y轴的二次函数且f(1)=1可求函数解析式
(2)根据(I)可先求f(
),然后进一步代入即可求解
点评:本题主要考查了利用待定系数法求解函数的解析式,解题的关键是由已知 函数图象找出函数所经过的已知点的坐标
则由图象可知,
![](http://thumb.zyjl.cn/pic5/latex/543353.png)
![](http://thumb.zyjl.cn/pic5/latex/7168.png)
∴f(x)=x+2(x≤-1)
当x≥1时,设f(x)=mx+n
由图象可得,
![](http://thumb.zyjl.cn/pic5/latex/543354.png)
![](http://thumb.zyjl.cn/pic5/latex/313537.png)
∴f(x)=-x+2
当-1<x<1,设f(x)=ax2+2
∵f(1)=a+2=1
∴a=1
∴
![](http://thumb.zyjl.cn/pic5/latex/543355.png)
(2)∵f(
![](http://thumb.zyjl.cn/pic5/latex/33.png)
![](http://thumb.zyjl.cn/pic5/latex/543356.png)
![](http://thumb.zyjl.cn/pic5/latex/13.png)
∴f[f(
![](http://thumb.zyjl.cn/pic5/latex/33.png)
![](http://thumb.zyjl.cn/pic5/latex/13.png)
![](http://thumb.zyjl.cn/pic5/latex/543357.png)
![](http://thumb.zyjl.cn/pic5/latex/1653.png)
分析:(I)结合图象可知,当x≤-1,x≥1时,函数为一次函数,设出函数的解析式,由函数图象所经过的点的坐标求解即可;当-1<x<1,函数为开口向下,对称轴为y轴的二次函数且f(1)=1可求函数解析式
(2)根据(I)可先求f(
![](http://thumb.zyjl.cn/pic5/latex/33.png)
点评:本题主要考查了利用待定系数法求解函数的解析式,解题的关键是由已知 函数图象找出函数所经过的已知点的坐标
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目