题目内容

在△ABC中,内角A,B,C满足4sinAsinC-2cos(A-C)=1.
(Ⅰ)求角B的大小;
(Ⅱ)求sinA+2sinC的取值范围.
(Ⅰ) ;(Ⅱ)(].

试题分析:(Ⅰ)先利用三角函数的和差化积公式化简等式,求得角B的余弦值,从而求得角B的大小;(Ⅱ)根据(Ⅰ)中角B的大小,把化为一个角的三角函数式,再根据此角的范围,求出整个式子的范围.
试题解析:(Ⅰ)因为4sinAsinC-2cos(A-C)=4sinAsinC-2cosAcosC+2sinAsinC
=-2(cosAcosC-sinAsinC),
所以-2cos(A+C)=1,故cos B=
又0<B<π,所以B=.                       6分
(Ⅱ)由(Ⅰ)知C=-A,故sinA+2sinC=2sinA+cosA=sin(A+θ),
其中0<θ<,且sinθ=,cosθ=
由0<A<知,θ<A+θ<+θ,故<sin(A+θ)≤1.
所以sinA+2sinC∈(].            14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网