题目内容
【题目】如图所示,某人在M汽车站的北偏西20°的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶,公路的走向是M站的北偏东40°,开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米.问汽车还需行驶多远,才能到达M汽车站?
【答案】解:设汽车前进20千米后到达点B, 则在△ABC中,AC=31,BC=20,AB=21,
由余弦定理得cosC= = = ,
则sinC= = ,
由已知∠AMC=60°,∴∠MAC=120°﹣C,
sin∠MAC=sin(120°﹣C)=sin120°cosC﹣cos120°sinC=
在△MAC中,由正弦定理得 = =35
从而有MB=MC﹣BC=15(千米)
所以汽车还需行驶15千米,才能到达M汽车站.
【解析】在△ABC中,由余弦定理得cosC,然后利用同角三角函数的基本关系式求出sinC,通过sin∠MAC=sin(120°﹣C),在△MAC中求出MC,然后求解MB即可.
【题目】调查某车间20名工人的年龄,第i名工人的年龄为ai,具体数据见表:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ai | 29 | 28 | 30 | 19 | 31 | 28 | 30 | 28 | 32 | 31 | 30 | 31 | 29 | 29 | 31 | 32 | 40 | 30 | 32 | 30 |
(1)作出这20名工人年龄的茎叶图;
(2)求这20名工人年龄的众数和极差;
(3)执行如图所示的算法流程图(其中 是这20名工人年龄的平均数),求输出的S值.
【题目】某网站对“爱飞客”飞行大会的日关注量x(万人)与日点赞量y(万次)进行了统计对比,得到表格如下:
x | 3 | 5 | 6 | 7 | 9 |
y | 2 | 3 | 3 | 4 | 5 |
由散点图象知,可以用回归直线方程 来近似刻画它们之间的关系.
(Ⅰ)求出y关于x的回归直线方程,并预测日关注量为10万人时的日点赞量;
(Ⅱ)一个三口之家参加“爱飞客”亲子游戏,游戏规定:三人依次从装有3个白球和2个红球的箱子中不放回地各摸出一个球,大人摸出每个红球得奖金10元,小孩摸出1个红球得奖金50元.求该三口之家所得奖金总额不低于50元的概率.
参考公式:b= ; 参考数据: =200, =112.