题目内容

(Ⅰ)已知数列{an}满足a1=1,an+1=an+2n(n=1,2,3…),{bn}满足b1=1,bn+1=bn+
b
2
n
n
(n=1,2,3…),求证:
1
2
n
k=1
1
ak+1bk+kak+1-bk-k
<1

(Ⅱ)已知数列{an}满足:a1=1且2an-3an-1=
1
2n-2
(n≥2).设m∈N+,m≥n≥2,证明(an+
1
2n
 
1
m
(m-n+1)≤
m2-1
m
分析:(I)记In=
n
k=1
1
ak+1bk+kak+1-bk-k
,则I1=
1
2
I2<<In
.而In=
n
k=1
1
(ak+1-1)(bk+k)
n
k=1
1
ak+1-1
n
k=1
1
bk+k
.从而有
n
k=1
1
ak+1-1
=
n
k=1
1
k(k+1)
=1-
1
n+1
<1
.由bk+1=bk+
b
2
k
k
=
bk(bk+k)
k
,知
1
bk+1
=
k
bk(bk+k)
=
1
bk
-
1
bk+k
,从而有
n
k=1
1
bk+k
=
1
b1
-
1
bn+1
1
b1
=1
.所以
1
2
n
k=1
1
ak+1bk+kak+1-bk-k
<1

(II)设an+
x
2n
=
3
2
(an-1+
x
2n-1
)(n≤2)
an=
3
2
an-1+
c
2n-1
an=
3
2
an-1+
1
2n-1
比较系数得c=1.由此入手能够证明(an+
1
2n
^
1
m
(m-n+1)≤
m2-1
m
解答:解:(I)证明:记In=
n
k=1
1
ak+1bk+kak+1-bk-k
,则I1=
1
2
I2<<In
.(2分)
In=
n
k=1
1
(ak+1-1)(bk+k)
n
k=1
1
ak+1-1
n
k=1
1
bk+k
.(4分)
因为a1=1,an+1=an+2n,所以ak+1-1=k(k+1).(5分)
从而有
n
k=1
1
ak+1-1
=
n
k=1
1
k(k+1)
=1-
1
n+1
<1
.①
又因为bk+1=bk+
b
2
k
k
=
bk(bk+k)
k
,所以
1
bk+1
=
k
bk(bk+k)
=
1
bk
-
1
bk+k

1
bk+k
=
1
bk
-
1
bk+1
.从而有
n
k=1
1
bk+k
=
1
b1
-
1
bn+1
1
b1
=1
.②(6分)
由(1)和(2)即得In<1.综合得到
1
2
In<1

左边不等式的等号成立当且仅当n=1时成立.(7分)
(II)不妨设an+
x
2n
=
3
2
(an-1+
x
2n-1
)(n≤2)
an=
3
2
an-1+
c
2n-1
an=
3
2
an-1+
1
2n-1
比较系数得c=1.
an+
1
2n
=(
3
2
)n
an+
1
2n
=
3
2
(an-1+
1
2n-1
)

a1+
1
2
=
3
2
,故{an+
1
2n
}是首项为
3
2
公比为
3
2
的等比数列,
an=(
3
2
)n-
1
2n
(10分)
这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.
即证(
3
2
)
n
m
(m-n+1)≤
m2-1
m
,当m=n时显然成立.易验证当且仅当m=n=2时,等号成立.
bn=(
3
2
)
n
m
(m-n+1)
下面先研究其单调性.当m>n时,
bn
bn+1
=(
3
2
)-
1
m
(
m-n+1
m-n
)=(
3
2
)-
1
m
(1+
1
m-n
),
∴(
bn
bn+1
)m=(
3
2
)-1(1+
1
m-n
)m
2
3
(1+m•
1
m
)=
4
3
>1∴bnbn+1
(12分)
即数列{bn}是递减数列.因为n≥2,故只须证b2
m2-1
m
,即证(
3
2
)
2
m
m+1
m
.事实上,(
m+1
m
)m>1+Cm^ 
1
m
+Cm2
1
m2
=
5
2
-
1
2m
9
4
故上不等式成立.综上,原不等式成立.
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网