题目内容
若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是________.
[2-,2+]
圆x2+y2-4x-4y-10=0可转化为(x-2)2+(y-2)2=(3)2,∴圆心的坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为2,则圆心到直线l的距离应小于等于,
∴≤,∴2+4+1≤0,∴-2-≤≤-2+,又直线l的斜率k=-,∴2-≤k≤2+,即直线l的斜率的取值范围是[2-,2+].
∴≤,∴2+4+1≤0,∴-2-≤≤-2+,又直线l的斜率k=-,∴2-≤k≤2+,即直线l的斜率的取值范围是[2-,2+].
练习册系列答案
相关题目