题目内容
如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.
(1)证明:A1O⊥平面ABC;
(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.
(1)见解析(2)
【解析】(1)证明:∵AA1=A1C=AC=2,且O为AC中点,
∴A1O⊥AC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,A1O?平面A1AC,
∴A1O⊥平面ABC.
(2)∵VE-BCC1=VABC-A1B1C1=VA1-BCC1,∴BE=BA1,即A1E=A1B.
连接OB,在Rt△A1OB中,A1O⊥OB,A1O=,BO=1,故A1B=2,则A1E的长度为.
练习册系列答案
相关题目