题目内容

【题目】在三角形ABC中,角A,B,C所对边分别为a,b,c,满足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求三角形ABC的面积.

【答案】
(1)解:在三角形ABC中,∵(2b﹣c)cosA=acosC,

由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,

化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,

sinB≠0,解得cosA= .A∈(0,π).

∴A=


(2)解:由余弦定理得a2=b2+c2﹣2bccosA,

,b+c=5,

∴13=(b+c)2﹣3cb=52﹣3bc,

化为bc=4,

所以三角形ABC的面积S= sinA= =


【解析】(Ⅰ)(2b﹣c)cosA=acosC,由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,再利用和差公式、三角形内角和定理、诱导公式可得cosA= ,A∈(0,π).解得A.(2)由余弦定理得a2=b2+c2﹣2bccosA,把 ,b+c=5,代入可得bc,可得三角形ABC的面积S= sinA.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网