题目内容
6.已知a>0,函数f(x)=ax3-3x+1,x∈[-1,1],求f(x)的最小值.分析 先求导并化简f′(x)=3ax2-3=3a(x2-$\frac{1}{a}$)=3a(x+$\frac{1}{\sqrt{a}}$)(x-$\frac{1}{\sqrt{a}}$);从而由导数的正负讨论以确定函数的单调性,从而求函数的最值.
解答 解:∵f(x)=ax3-3x+1,
∴f′(x)=3ax2-3=3a(x2-$\frac{1}{a}$)=3a(x+$\frac{1}{\sqrt{a}}$)(x-$\frac{1}{\sqrt{a}}$);
①当0<a≤1时,$\frac{1}{\sqrt{a}}$≥1;
故f(x)在[-1,1]上是减函数,
故fmin(x)=f(1)=a-2;
②当a>1时,$\frac{1}{\sqrt{a}}$<1;
f(x)在[-1,-$\frac{1}{\sqrt{a}}$]上是增函数,在[-$\frac{1}{\sqrt{a}}$,$\frac{1}{\sqrt{a}}$]上是减函数,在[$\frac{1}{\sqrt{a}}$,1]上是增函数,
且f(-1)=4-a,f($\frac{1}{\sqrt{a}}$)=1-$\frac{2}{\sqrt{a}}$,
又∵f(-1)-f($\frac{1}{\sqrt{a}}$)=4-a-(1-$\frac{2}{\sqrt{a}}$)
=-$(\sqrt{a}-2)$$(\sqrt{a}+1)^{2}$,
故当$\sqrt{a}$≤2,即a≤4时,f(-1)≥f($\frac{1}{\sqrt{a}}$),
故fmin(x)=f($\frac{1}{\sqrt{a}}$)=1-$\frac{2}{\sqrt{a}}$,
当$\sqrt{a}$>2,即a>4时,f(-1)<f($\frac{1}{\sqrt{a}}$),
故fmin(x)=f(-1)=4-a.
点评 本题考查了导数的综合应用及分类讨论的思想应用,属于中档题.
A. | ?x∈R,2x2+x-1≥0 | B. | ?x0∈R,2x02+x0-1>0 | ||
C. | ?x∈R,2x2+x-1≠0 | D. | ?x0∈R,2x02+x0-1≤0 |