题目内容
已知双曲线的一个焦点与抛物线的焦点重合,则此双曲线的离心率为( )
A. | B. | C. | D. |
C
解析试题分析:先确定抛物线的焦点坐标,可得双曲线的焦点坐标,从而可求双曲线的离心率.解:抛物线y2=8x的焦点坐标为(2,0),∵抛物线y2=8x的焦点与双曲线的一个焦点重合,可知∴a2+1=4,∴a= ,故可知双曲线的离心率为 ,故选C.
考点:抛物线与双曲线的几何性质
点评:本题考查抛物线的标准方程,考查抛物线与双曲线的几何性质,属于基础题
练习册系列答案
相关题目
以双曲线的右顶点为焦点的抛物线的标准方程为 ( )
A. | B. | C. | D. |
椭圆的焦距是2,则=( )
A.5 | B.3 | C.5或3 | D.2 |
焦点在x轴上的椭圆的离心率的最大值为( )
A. | B. | C. | D. |
等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,,则的实轴长为( )
A. | B. | C. | D. |
已知椭圆的左焦点为F
A. | B. | C. | D. |