ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=3an+1£®
£¨1£©Ö¤Ã÷{an+$\frac{1}{2}$}ÊǵȱÈÊýÁУ»
£¨2£©Áîbn=log3£¨2an-1£©£¬ÇóÊýÁÐ{$\frac{1}{{b}_{n}{b}_{n+1}}$}µÄÇ°nÏîºÍSn£»
£¨3£©Ö¤Ã÷£º$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$£¼$\frac{3}{2}$£®

·ÖÎö £¨1£©Í¨¹ý¶Ôan+1=3an+1±äÐοÉÖªan+1+$\frac{1}{2}$=3£¨an+$\frac{1}{2}$£©£¬½ø¶ø¿ÉÖªÊýÁÐ{an+$\frac{1}{2}$}ÊÇÒÔ$\frac{3}{2}$ΪÊ×Ïî¡¢3Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªan+$\frac{1}{2}$=$\frac{1}{2}$•3n£¬´Ó¶øbn=n£¬²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ý£¨1£©¿ÉÖªan+$\frac{1}{2}$=$\frac{1}{2}$•3n£¬½ø¶ø$\frac{1}{{a}_{n}}$=$\frac{2}{{3}^{n}-1}$£¬ÀûÓ÷ÅËõ·¨¿ÉÖªµ±n¡Ý2ʱ$\frac{1}{{a}_{n}}$£¼$\frac{1}{{3}^{n-1}}$£¬ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼ÆËã¼´µÃ½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£º¡ßan+1=3an+1£¬
¡àan+1+$\frac{1}{2}$=3£¨an+$\frac{1}{2}$£©£¬
ÓÖ¡ßa1+$\frac{1}{2}$=1+$\frac{1}{2}$=$\frac{3}{2}$£¬
¡àÊýÁÐ{an+$\frac{1}{2}$}ÊÇÒÔ$\frac{3}{2}$ΪÊ×Ïî¡¢3Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ£¨1£©¿ÉÖªan+$\frac{1}{2}$=$\frac{3}{2}$•3n-1=$\frac{1}{2}$•3n£¬
¡àbn=log3£¨2an-1£©
=log33n
=n£¬
¡à$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}$-$\frac{1}{n+1}$£¬
¡àSn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+¡­+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$£»
£¨3£©Ö¤Ã÷£ºÓÉ£¨1£©¿ÉÖªan+$\frac{1}{2}$=$\frac{3}{2}$•3n-1=$\frac{1}{2}$•3n£¬
¡àan=$\frac{1}{2}$•3n-$\frac{1}{2}$£¬
¡à$\frac{1}{{a}_{n}}$=$\frac{2}{{3}^{n}-1}$£¬
µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{n}}$=$\frac{2}{{3}^{n}-1}$£¼$\frac{2}{{3}^{n}-{3}^{n-1}}$=$\frac{1}{{3}^{n-1}}$£¬
¡àµ±n=1ʱ£¬$\frac{1}{{a}_{1}}$=1£¼$\frac{3}{2}$£¬³ÉÁ¢£»
µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$£¼1+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+¡­+$\frac{1}{{3}^{n-1}}$
=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$
=$\frac{3}{2}$£¨1-$\frac{1}{{3}^{n}}$£©
£¼$\frac{3}{2}$£¬
¡à$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$£¼$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏעÒâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø