题目内容
如图,将直角沿着平行边的直线折起,使得平面平面,其中、分别在、边上,且,,,点为点折后对应的点,当四棱锥的体积取得最大值时,求的长.
已知函数,函数.
(Ⅰ)若曲线与直线相切,求的值;
(Ⅱ)在(Ⅰ)的条件下,证明:;
(Ⅲ)若函数与函数的图像有且仅有一个公共点,证明:.
在等差数列,若,,则等于( )
A. 13 B. 15 C. 17 D. 48
设函数的导函数为,且满足,,则时,( )
A. 有极大值,无极小值 B. 有极小值,无极大值
C. 既有极大值又有极小值 D. 既无极大值也无极小值
已知,则复数的实部与虚部的和为( )
A. B. C. D.
我国古代数学家著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金,第2关收税金为剩余金的,第3关收税金为剩余税金的,第4关收税金为剩余金的,第5关收税金为剩余金的.5关所收税金之和,恰好重1斤,问原本持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为,按此规律通过第8关”,则第8关需收税金为__________ .
若函数在区间上递减,则的最大值为( )
A. B. 2 C. D.
在某项测试中,测量结果服从正态分布,若,则__________.
定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列的等和数列,且,公和为5,那么的值为__________.