题目内容

19.已知sin($α-\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,且$\frac{π}{2}<α<\frac{3π}{4}$,求tan(2$α+\frac{π}{4}$)的值.

分析 由α的范围求出$α-\frac{π}{4}$的范围,得到$cos(α-\frac{π}{4})$的值,利用两角和的正弦求得sinα,进一步得到tanα,再由倍角公式求得tan2α,最后展开两角和的正切得答案.

解答 解:∵$\frac{π}{2}<α<\frac{3π}{4}$,∴$\frac{π}{4}<α-\frac{π}{4}<\frac{π}{2}$,
又sin($α-\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,∴cos($α-\frac{π}{4}$)=$\sqrt{1-si{n}^{2}(α-\frac{π}{4})}=\sqrt{1-(\frac{7\sqrt{2}}{10})^{2}}=\frac{\sqrt{2}}{10}$.
∴sinα=sin[($α-\frac{π}{4}$)+$\frac{π}{4}$]=sin($α-\frac{π}{4}$)cos$\frac{π}{4}$+cos($α-\frac{π}{4}$)sin$\frac{π}{4}$
=$\frac{7\sqrt{2}}{10}×\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{10}×\frac{\sqrt{2}}{2}=\frac{4}{5}$,∴cos$α=-\frac{3}{5}$,则tanα=$-\frac{4}{3}$.
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}=\frac{2×(-\frac{4}{3})}{1-(-\frac{4}{3})^{2}}=\frac{24}{7}$
则tan(2$α+\frac{π}{4}$)=$\frac{tan2α+tan\frac{π}{4}}{1-tan2α•tan\frac{π}{4}}$=$\frac{\frac{24}{7}+1}{1-\frac{24}{7}}=-\frac{31}{17}$.

点评 本题考查三角函数的化简与求值,考查了两角和的正弦、正切公式,关键是“拆角配角”思想的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网