ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÃüÌ⣺£¨1£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Ácos¦Á=1£»
£¨2£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Á+cos¦Á=
3 |
2 |
£¨3£©º¯Êýy=sin(
5¦Ð |
2 |
£¨4£©·½³Ìx=
¦Ð |
6 |
¦Ð |
6 |
£¨5£©Èô¦Á£¬¦ÂÊǵÚÒ»ÏóÏ޽ǣ¬ÇÒ¦Á£¾¦Â£¬Ôòtan¦Á£¾tan¦Â£®
£¨6£©°Ñº¯Êýy=cos(2x+
¦Ð |
12 |
¦Ð |
12 |
¦Ð |
12 |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
·ÖÎö£º£¨1£©ÀûÓöþ±¶½Ç¹«Ê½¿ÉµÃsin2¦Á=2£¾1£¬£¨2£©ÀûÓÃÁ½½ÇºÍµÄÕýÏÒ¹«Ê½¿ÉµÃ£¬
sin(¦Á+
)=
£¾1£¨3£©ÏÈÀûÓÃÓÕµ¼¹«Ê½»¯¼ò£¬È»ºó¸ù¾Ýżº¯ÊýµÄ¶¨ÒåÅжϣ¨4£©Çó³öº¯ÊýµÄ¶Ô³ÆÖᣬ°Ñx=
´úÈë¼ìÑ飨5£©¾Ù·´Àý¦Â=
£¬¦Á=
¦Ð£¨6£©¸ù¾Ýº¯ÊýµÄƽÒÆ·¨Ôò×ó¼ÓÓÒ¼õ¿ÉµÃ£®
2 |
¦Ð |
4 |
3
| ||
4 |
¦Ð |
6 |
¦Ð |
6 |
13 |
6 |
½â´ð£º½â£¨1£©sin¦Ácos¦Á=1?
sin2¦Á=1?sin2¦Á=2£¾1¹Ê£¨1£©´íÎó
£¨2£©sin¦Á+cos¦Á=
?
sin(¦Á+
)=
?sin(¦Á+
)=
£¾1¹Ê£¨2£©´íÎó
£¨3£©y=sin(
-2x)=cos2xÊÇżº¯Êý£¬¹Ê£¨3£©ÕýÈ·
£¨4£©y=cos£¨x-
£©µÄ¶Ô³ÆÖáÊÇx-
=k¦Ð?x=
+k¦Ð£¨£¬k¡ÊZ£©¹Ê£¨4£©ÕýÈ·
£¨5£©ÀýÈ磺¦Â=
£¬¦Á=
£¬¶øtan¦Á=tan¦Â¹Ê£¨5£©´íÎó
£¨6£©°Ñº¯Êýy=cos(2x+
)µÄͼÏóÏòÓÒƽÒÆ
¸öµ¥Î»£¬ËùµÃµÄº¯Êý½âÎöʽΪy=cos[2£¨x-
£©+
]¼´Îªy=cos(2x-
)£¬¹Ê£¨6£©ÕýÈ·
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£¨6£©
1 |
2 |
£¨2£©sin¦Á+cos¦Á=
3 |
2 |
2 |
¦Ð |
4 |
3 |
2 |
¦Ð |
4 |
3
| ||
4 |
£¨3£©y=sin(
5¦Ð |
2 |
£¨4£©y=cos£¨x-
¦Ð |
6 |
¦Ð |
6 |
¦Ð |
6 |
£¨5£©ÀýÈ磺¦Â=
¦Ð |
6 |
13¦Ð |
6 |
£¨6£©°Ñº¯Êýy=cos(2x+
¦Ð |
12 |
¦Ð |
12 |
¦Ð |
12 |
¦Ð |
12 |
¦Ð |
12 |
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£¨6£©
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÈý½Çº¯ÊýµÄ¶þ±¶½Ç¹«Ê½£¬Á½½ÇºÍµÄÕýÏÒ¹«Ê½£¬ÕýÏÒº¯ÊýµÄÖµÓò-1¡Üsinx¡Ü1£¬ÕýÓàÏÒº¯ÊýµÄ¶Ô³ÆÐÔ£¬º¯ÊýƽÒÆ·¨Ôò£®½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÊìÁ·µÄÕÆÎÕÈý½Çº¯ÊýµÄÏà¹ØÐÔÖÊ£¬Áé»îÔËÓÃÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿