题目内容
【题目】如图,是棱长为2的正方体,为面对角线上的动点(不包括端点),平面交于点,于.
(1)试用反证法证明直线与是异面直线;
(2)设,将长表示为的函数,并求此函数的值域;
(3)当最小时,求异面直线与所成角的大小.
【答案】(1)证明见解析;(2),值域;(3)
【解析】
(1)假设直线与是共面直线,利用公理2及长方体的相邻两个面不重合证明;
(2)设,利用平行线解线段成比例求得,得到,进一步求得,再由勾股定理列式求解,结合二次函数求值域;
(3)当时,最小,此时,由于,又,为异面直线与所成角的平面角,通过解直角三角形得答案.
(1)证明:假设直线与是共面直线,
设直线与都在平面上,则、、、.
因此,平面、平面都与平面有不共线的三个公共点,
即平面和平面重合(都与平面重合),
这与长方体的相邻两个面不重合矛盾,
于是,假设不成立,
直线与是异面直线;
(2)解:正方体的棱长为2,,
设,则,得,
,,得,
,
当时,有最小值为,当时,,
函数的值域为;
(3)当时,最小,此时,
在底面中,,,,
又,为异面直线与所成角的角,
在中,为直角,,
,
∴异面直线与所成角的大小为.
练习册系列答案
相关题目
【题目】某初级中学共有学生2000名,各年级男生女生人数如表: 已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.
初一年级 | 初二年级 | 初三年级 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
(1)求x的值.
(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?
(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.