题目内容

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有唯一的公共点,求角α的大小.

【答案】解:(Ⅰ)当 时,直线l的普通方程为x=﹣1;
时,直线l的普通方程为y=(tanα)(x+1).…(2分)
由ρ=2cosθ,得ρ2=2ρcosθ,
所以x2+y2=2x,即为曲线C的直角坐标方程.…(4分)
(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,整理得t2﹣4tcosα+3=0.当α= 时,方程化为:t2+3=0,方程不成立,当 时,由△=16cos2α﹣12=0,得 ,所以
故直线l倾斜角α为
【解析】(Ⅰ)通过当 时,当 时,分别求出直线l的普通方程.由ρ=2cosθ,得ρ2=2ρcosθ,然后求解曲线C的直角坐标方程.(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,利用△=0,求解直线l倾斜角α.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网