题目内容
已知函数在处取得极值。
(1)求的极值。
(2)当时,求的最大值。
(1)极大值2,极小值-2(2)2
(本题12分)已知函数在处取得极值.
(1) 求;
(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.
已知函数=在处取得极值.
(1)求实数的值;
(2) 若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;
(本小题满分14分) 已知函数在处取得极值。
(Ⅰ)求函数的解析式;
(Ⅱ)求证:对于区间上任意两个自变量的值,都有;
(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。
设函数为实数。
(Ⅰ)已知函数在处取得极值,求的值;
(Ⅱ)已知不等式对任意都成立,求实数的取值范围。
(12分)已知函数在处取得极值.
(Ⅰ)求实数的值;[来源:学+科+网]
(Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.