题目内容
甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码x后放入乙盒,再从乙盒中任取一小球,记下号码y.
(Ⅰ)求y=2的概率;
(Ⅱ)设随机变量X=|x-y|,求随机变量X的分布列及数学期望.
(Ⅰ)求y=2的概率;
(Ⅱ)设随机变量X=|x-y|,求随机变量X的分布列及数学期望.
分析:(Ⅰ)P(y=2)=P(x=2,y=2)+P(x≠2,y=2),由此能求出y=2的概率.
(Ⅱ)随机变量X可取的值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列及数学期望.
(Ⅱ)随机变量X可取的值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列及数学期望.
解答:解:(Ⅰ)P(y=2)=P(x=2,y=2)+P(x≠2,y=2)
=
×
+
×
=
,
故y=2的概率为
.
(Ⅱ)随机变量X可取的值为0,1,2,3.
当X=0时,(x,y)=(1,1),(2,2),(3,3),(4,4)
∴P(X=0)=
×
+
×
+
×
+
×
=
当X=1时,(x,y)=(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),
∴P(X=1)=
×
+
×
+
×
+
×
+
×
+
×
=
同理可得P(X=2)=
;P(X=3)=
∴随机变量X的分布列为
∴EX=0×
+1×
+2×
+3×
=1.
=
1 |
4 |
2 |
5 |
3 |
4 |
1 |
5 |
1 |
4 |
故y=2的概率为
1 |
4 |
(Ⅱ)随机变量X可取的值为0,1,2,3.
当X=0时,(x,y)=(1,1),(2,2),(3,3),(4,4)
∴P(X=0)=
1 |
4 |
2 |
5 |
1 |
4 |
2 |
5 |
1 |
4 |
2 |
5 |
1 |
4 |
2 |
5 |
2 |
5 |
当X=1时,(x,y)=(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),
∴P(X=1)=
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
3 |
10 |
同理可得P(X=2)=
1 |
5 |
1 |
10 |
∴随机变量X的分布列为
X | 0 | 1 | 2 | 3 | ||||||||
P |
|
|
|
|
2 |
5 |
3 |
10 |
1 |
5 |
1 |
10 |
点评:本题考查离散型随机变量的分布列和数学期望,解题时要认真审题,注意排列组合知识的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目