题目内容
12.根据统计,一名工人组装第x件产品所用的时间(单位:分钟)为f(x)=$\left\{\begin{array}{l}\frac{c}{{\sqrt{x}}},x<a\\ \frac{c}{{\sqrt{a}}},x≥a\end{array}$(a,c为常数).已知工人组装第4件产品用时30分钟,组装第a件产品用时5分钟,那么c和a的值分别是( )A. | 75,25 | B. | 75,16 | C. | 60,144 | D. | 60,16 |
分析 首先,x=a的函数值可由表达式直接得出,再根据x=4与x=a的函数值不相等,说明求f(4)要用x<a对应的表达式,将方程组联解,可以求出c、a的值
解答 解:由题意可得:f(a)=$\frac{c}{\sqrt{a}}$=5,
所以c=5$\sqrt{a}$,
而f(4)=$\frac{c}{\sqrt{4}}$=30,可得出$\frac{c}{2}$=30,
故c=60,a=144,
故选:C
点评 分段函数是函数的一种常见类型,解决的关键是寻找不同自变量所对应的范围,在相应区间内运用表达式加以解决.
练习册系列答案
相关题目
2.函数f(x)=2x2-x的单调的增区间为( )
A. | $(-∞,\frac{1}{4}]$ | B. | $[\frac{1}{4},+∞)$ | C. | $(-∞,\frac{1}{2}]$ | D. | $[\frac{1}{2},+∞)$ |
3.曲线y=cosx与x轴以及直线x=$\frac{3π}{2}$,x=0所围图形的面积为( )
A. | 4 | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
7.曲线y=2x+cosx在x=$\frac{π}{2}$处的切线的倾斜角为( )
A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
17.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
(1)求y关于x的回归直线方程.
(2)并预测广告费支出700万元的销售额大约是多少万元?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(2)并预测广告费支出700万元的销售额大约是多少万元?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$)