题目内容
【题目】目前用外卖网点餐的人越来越多.现对大众等餐所需时间情况进行随机调查,并将所得数据绘制成频率分布直方图(如图).其中等餐所需时间的范围是,样本数据分组为, ,,,.
(1)求直方图中的值;
(2)某同学在某外卖网点了一份披萨,试估计他等餐时间不多于小时的概率;
(3)现有名学生都分别通过外卖网进行了点餐,这名学生中等餐所需时间少于小时的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)
【答案】(1);(2);(3)分布列见解析,数学期望
【解析】
(1)利用直方图概率的和为1,直接求解即可;
(2)根据直方图直接计算等餐时间不多于小时的概率;
(3)的可能取值为0,1,2,3,求出概率,得到分布列,然后求解期望.
解:(1)
解得;
(2)由直方图可得等餐时间不多于小时的概率,
所以他等餐时间不多于小时的概率为;
(3)这名学生中等餐所需时间少于小时的人数可取0,1,2,3
由(2)可知每个人等餐时间不超过1小时的概率为
所以 ,
,
那么的分布列为:
这名学生中等餐所需时间少于小时的人数的数学期望
.
【题目】某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:
周一 | 无雨 | 无雨 | 有雨 | 有雨 |
周二 | 无雨 | 有雨 | 无雨 | 有雨 |
收益 | 万元 | 万元 | 万元 | 万元 |
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为万元;有雨时,收益为万元.额外聘请工人的成本为万元.
已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为万元的概率为.
(Ⅰ)若不额外聘请工人,写出基地收益的分布列及基地的预期收益;
(Ⅱ)该基地是否应该外聘工人,请说明理由.
【题目】在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.
(1)根据以上数据建立一个列联表;
(2)判断是否有99%的把握认为性别与休闲方式有关系.
下面临界值表供参考:
0.10 | 0.05 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:)