题目内容

16.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线C的右支上一点,I为△PF1F2的内心,记△PIF1,△PIF2,△F1IF2的面积分别为S1,S2,S3,若S1≥S2+$\frac{1}{2}$S3,则双曲线C的离心率的取值范围是(1,2].

分析 设PF1=m,PF2=n,内切圆的半径长为r,则S1=$\frac{1}{2}$mr,S2=$\frac{1}{2}$nr,S3=$\frac{1}{2}$•2cr,由题可得m≥n+c,即m-n≥c,即可求出双曲线C的离心率的取值范围.

解答 解:设PF1=m,PF2=n,内切圆的半径长为r,则S1=$\frac{1}{2}$mr,S2=$\frac{1}{2}$nr,S3=$\frac{1}{2}$•2cr,
由题可得m≥n+c,即m-n≥c,
∴2a≥c,
即e≤2,
∴e∈(1,2].
故答案为:(1,2].

点评 本题考查双曲线C的离心率的取值范围,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网