ÌâÄ¿ÄÚÈÝ
6£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+2cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôPÊÇÇúÏßC2ÉϵÄÒ»µã£¬¹ýµãPÏòÇúÏßC1ÒýÇÐÏߣ¬ÇеãΪQ£¬Çó|PQ|µÄ×îСֵ£®
·ÖÎö £¨1£©ÇúÏßC1µÄ·½³Ì£¬ÏûÈ¥²ÎÊý¿ÉµÃ£®ÇúÏßC2µÄ·½³Ì¿ÉµÃ¦Ñsin¦È+¦Ñcos¦È=2£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨II£©¹ýÔ²ÐÄC×÷CP¡ÍÖ±ÏßC2£¬´¹×ãΪµãP£¬´ËʱÇÐÏß³¤PQ×îС£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ|CP|£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+2cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ£¨x+2£©2+y2=4£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬¼´x+y-2=0£»
£¨2£©Ô²ÐÄ£¨-2£¬0£©µ½Ö±ÏߵľàÀëΪ$\frac{|-2+0-2|}{\sqrt{2}}$=2$\sqrt{2}$£¬
¡à|PQ|µÄ×îСֵΪ$\sqrt{8-4}$=2£®
µãÆÀ ±¾Ì⿼²éÁËÖ±Ïߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ô²µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÎªÁ˲μÓÒ»ÏîÊýѧÄÜÁ¦²âÊÔÍÅÌåÈü£¬Ä³Ð£¶Ô¼×¡¢ÒÒÁ½¸öʵÑé°à¼¶½øÐÐÁËÒ»¶Îʱ¼äµÄ¡°ÏÞʱÇÀ·Ö¡±Ç¿»¯ÑµÁ·£¬ÏÖ·Ö±ð´ÓÇ¿»¯ÑµÁ·ÆÚ¼äÁ½°àµÄÈô¸É´Îƽ¾ù³É¼¨ÖÐËæ»ú³éÈ¡6´Î£¨Âú·Ö100·Ö£©£¬¼Ç¼Èç±í£º
¸ù¾ÝÕâ6´ÎµÄÊý¾Ý»Ø´ð£º
£¨¢ñ£©ÏÖҪѡÅÉÒ»¸öʵÑé°à²Î¼Ó²âÊÔÍÅÌåÈü£¬´Óͳ¼Æѧ½Ç¶È£¬ÄãÈÏΪѡÅÉÄĸöʵÑé°àºÏÀí£¿ËµÃ÷ÀíÓÉ£»
£¨¢ò£©¶ÔÑ¡ÅɵÄʵÑé°àÔÚÍÅÌåÈüµÄÈý´Î±ÈÈü³É¼¨½øÐÐÔ¤²â£¬¼ÇÕâÈý´Îƽ¾ù³É¼¨Öв»µÍÓÚ85·ÖµÄ´ÎÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûEX£®
¼×ƽ¾ù³É¼¨ | 83 | 91 | 80 | 79 | 92 | 85 |
ÒÒƽ¾ù³É¼¨ | 92 | 93 | 80 | 84 | 82 | 79 |
£¨¢ñ£©ÏÖҪѡÅÉÒ»¸öʵÑé°à²Î¼Ó²âÊÔÍÅÌåÈü£¬´Óͳ¼Æѧ½Ç¶È£¬ÄãÈÏΪѡÅÉÄĸöʵÑé°àºÏÀí£¿ËµÃ÷ÀíÓÉ£»
£¨¢ò£©¶ÔÑ¡ÅɵÄʵÑé°àÔÚÍÅÌåÈüµÄÈý´Î±ÈÈü³É¼¨½øÐÐÔ¤²â£¬¼ÇÕâÈý´Îƽ¾ù³É¼¨Öв»µÍÓÚ85·ÖµÄ´ÎÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûEX£®