题目内容
已知向量
=(sinx,2),
=(cosx,-1).
(1)当
∥
时,求sin2x-sin2x的值;
(2)求f(x)=(
+
)•
在[-
,0]上的值域.
a |
b |
(1)当
a |
b |
(2)求f(x)=(
a |
b |
a |
π |
2 |
(1)∵
∥
,
∴2cosx+sinx=0,∴tanx=-2.
sin2x-sin2x=
=
=
.
(2)∵
+
=(sinx+cosx,1),
∴f(x)=(
+
)•
=(sinx+cosx)•sinx+2
=
(sin2x-cos2x)+
=
sin(2x-
)+
.
∵-
≤x≤0,
∴-
≤2x-
≤-
,
∴-1≤sin(2x-
)≤
,
∴
≤f(x)≤3.
a |
b |
∴2cosx+sinx=0,∴tanx=-2.
sin2x-sin2x=
sin2x-2sinxcosx |
sin2x+cos2x |
tan2x-2tanx |
1+tan2x |
8 |
5 |
(2)∵
a |
b |
∴f(x)=(
a |
b |
a |
=
1 |
2 |
5 |
2 |
| ||
2 |
π |
4 |
5 |
2 |
∵-
π |
2 |
∴-
5π |
4 |
π |
4 |
π |
4 |
∴-1≤sin(2x-
π |
4 |
| ||
2 |
∴
5-
| ||
2 |
练习册系列答案
相关题目