题目内容

【题目】如图,在三棱柱中,面为矩形,的中点,交于点.

证明:

,求BC与平面ACD所成角的正弦值.

【答案】1证明略2.

【解析】

试题解析:证明:由已知得,, RtBADRtABB1

∴∠BDA=B1AB, ∴∠ABD+B1AB=ABD+BDA=90

AOB中,AOB=180 -ABO+OAB =90,即BDAB1

另BCAB1,BDBC=B,AB1平面BCD,CD平面BCD,

CDAB1

在RtABD中,AB=1,AD= AO=

在RtAOB中, 得BO=, ----8分

建立如图坐标系,设BC与平面ACD所成的角为

设平面ADC的法向量为n.解得n=.

即BC与平面ACD所成角的正弦值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网