题目内容
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若f(2)=2,un=
(n∈N*),求证数列{un}是等差数列,并求{un}的通项公式.
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若f(2)=2,un=
f(2n) |
2n |
查看本题解析需要登录 | |
查看解析 | 如何获取优点?普通用户:2个优点。 |
如何申请VIP用户?VIP用户:请直接登录即可查看。 |
练习册系列答案
相关题目