题目内容
19.经过点(3,0),离心率为$\frac{5}{3}$的双曲线的标准方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.分析 由题意可得e=$\frac{c}{a}$=$\frac{5}{3}$,且a=3,可得c=5,那么利用a,b,c关系得到b2=c2-a2=16,从而求得它的标准方程.
解答 解:因为设经过点(3,0),离心率为$\frac{5}{3}$的双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,那么可知e=$\frac{c}{a}$=$\frac{5}{3}$,且a=3,
因此c=5,那么利用a,b,c关系得到b2=c2-a2=16,
∴双曲线的标准方程为 $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,
故答案为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.
点评 本题主要考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.
练习册系列答案
相关题目
9.设集合A={x|x≤2},则下列四个关系中正确的是( )
A. | 1∈A | B. | 1∉A | C. | {1}∈A | D. | 1⊆A |
8.有下列四个命题:
p1:若幂函数f(x)=kxm过(3,9),则mk=2;
p2:函数f(x)=ex的反函数为g(x)=lnx;
p3:“a>1,b>1”是“f(x)=ax-b(a>0,a≠1)”的图象不过第二象限的必要不充分条件;
p4:“p∨q”为假是“p∧q”为假的充分不必要条件.其中正确的命题是( )
p1:若幂函数f(x)=kxm过(3,9),则mk=2;
p2:函数f(x)=ex的反函数为g(x)=lnx;
p3:“a>1,b>1”是“f(x)=ax-b(a>0,a≠1)”的图象不过第二象限的必要不充分条件;
p4:“p∨q”为假是“p∧q”为假的充分不必要条件.其中正确的命题是( )
A. | p1,p2,p3 | B. | p1,p2,p4 | C. | p1,p3,p4 | D. | p2,p3,p4 |