题目内容

(本题13分)
已知f(x)=lnx+x2-bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=-1时,设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.
解:(1)∵f(x)在(0,+∞)上递增,
∴f ′(x)=+2x-b≥0,对x∈(0,+∞)恒成立,
即b≤+2x对x∈(0,+∞)恒成立,
∴只需b≤min (x>0),
∵x>0,∴+2x≥2,当且仅当x=时取“=”,
∴b≤2,
∴b的取值范围为(-∞,2].
(2)当b=-1时,g(x)=f(x)-2x2=lnx-x2+x,其定义域是(0,+∞),
∴g′(x)=-2x+1
=-=-,
令g′(x)=0,即-=0,
∵x>0,∴x=1,
当0<x<1时,g′(x)>0;当x>1时,g′(x)<0,
∴函数g(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴当x≠1时,g(x)<g(1),即g(x)<0,当x=1时,g(x)=0.
∴函数g(x)只有一个零点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网