题目内容
已知函数在区间上的最大值与最小值分别为,则 .
【答案】
32
【解析】解:∵函数f(x)=x3-12x+8
∴f′(x)=3x2-12
令f′(x)>0,解得x>2或x<-2;令f′(x)<0,解得-2<x<2
故函数在[-2,2]上是减函数,在[-3,-2],[2,3]上是增函数,
所以函数在x=2时取到最小值f(2)=8-24+8=-8,在x=-2时取到最大值f(-2)=-8+24+8=24
即M=24,m=-8∴M-m=32故选C.
练习册系列答案
相关题目