题目内容
已知函数是定义在实数集R上的奇函数,且在区间上是单调递增,若,则的取值范围为 .
.
试题分析:先将函数中的变量化简,再确定函数f(x)是在实数集R上单调递增,利用函数的单调性,即可求得x的取值范围.∵lg2•lg50+(lg5)2=(1-lg5)(1+lg5)+(lg5)2=1
∴f(lg2•lg50+(lg5)2)+f(lgx-2)<0,可化为f(1)+f(lgx-2)<0,
∵函数f(x)是定义在实数集R上的奇函数,
∴f(lgx-2)<f(-1)
∵函数f(x)是定义在实数集R上的奇函数,且在区间[0,+∞)上是单调递增,
∴函数f(x)是在实数集R上单调递增
∴lgx-2<-1∴lgx<1∴0<x<10,故答案为:(0,10).
点评:解题的关键是确定函数的单调性,化抽象不等式为具体不等式,属于基础题.
练习册系列答案
相关题目