题目内容
如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
某地拟建一座长为640米的大桥,假设桥墩等距离分布,经设计部门测算,两端桥墩,造价为100万元,当相邻两个桥墩的距离为米时(其中).中间每个桥墩的平均造价为万元,桥面每1米长的平均造价为万元.
(1)试将桥的总造价表示为的函数;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩,除外)应建多少个桥墩?
设椭圆的焦点,过右焦点的直线与 相交于两点,若的周长为短轴长的倍.
(1)求的离心率;
(2)设的斜率为,在上是否存在一点,使得?若存在,求出点的坐标; 若不存在,说明理由.
命题“存在”的否定是 ( )
A.不存在 B.对任意的
C.对任意的 D.存在
矩阵与变换
求椭圆在矩阵对应的变换作用下所得的曲线的方程.
已知正数,满足,则的最小值为 .
某校有足球、篮球、排球三个兴趣小组,共有成员120人,其中足球、篮球、排球的成员分别有40人、60人、20人.现用分层抽样的方法从这三个兴趣小组中抽取24人来调查 活动开展情况,则在足球兴趣小组中应抽取 人.
已知三棱锥的四个顶点都在球的表面上,平面,且,则球的表面积为 ( )
A. B. C. D.
已知两个等差数列的前项和分别记为,,则
__________,______________.