题目内容
(文)已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_ST/0.png)
(Ⅰ)求⊙M和抛物线C的标准方程;
(Ⅱ)过圆心M的直线交抛物线C于P、Q两点,问
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_ST/images2.png)
【答案】分析:(Ⅰ)根据
=OA•cos60°,可求出p的值,从而求出抛物线方程,求出圆心和半径可求出⊙M的方程;
(Ⅱ)分类讨论,设出直线方程代入抛物线方程,利用韦达定理及向量的数量积公式,即可求得结论.
解答:解:(Ⅰ)因为
=OA•cos60°=2×
=1,即p=2,所以抛物线C的方程为y2=4x
设⊙M的半径为r,则r=
×
=2,所以⊙M的方程为(x-2)2+y2=4
(Ⅱ)M(2,0),设P(x1,y1),Q(x2,y2),
(1)当PQ斜率不存在时,P(2,2
),Q(2,-2
),则
=x1x2+y1y2=-4
(2)当PQ斜率存在时,设PQ的方程为y=k(x-2)(k≠0),消y得k2x2-(4k2+4)x+4k2=0
所以x1+x2=
,x1x2=4,
因为y12=4x1,y22=4x2,所以y12y22=16x1x2=64,故y1y2=-8
所以
=x1x2+y1y2=-4
所以
为定值,该值为-4.
点评:本题考查抛物线与圆的方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/0.png)
(Ⅱ)分类讨论,设出直线方程代入抛物线方程,利用韦达定理及向量的数量积公式,即可求得结论.
解答:解:(Ⅰ)因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/2.png)
设⊙M的半径为r,则r=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/4.png)
(Ⅱ)M(2,0),设P(x1,y1),Q(x2,y2),
(1)当PQ斜率不存在时,P(2,2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/7.png)
(2)当PQ斜率存在时,设PQ的方程为y=k(x-2)(k≠0),消y得k2x2-(4k2+4)x+4k2=0
所以x1+x2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/8.png)
因为y12=4x1,y22=4x2,所以y12y22=16x1x2=64,故y1y2=-8
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/9.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101644831493388/SYS201311031016448314933022_DA/10.png)
点评:本题考查抛物线与圆的方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目