题目内容
如图所示,在三棱锥A-BCD中,∠BDC为锐角,∠CBD=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_ST/2.png)
证明:(1)DC⊥BC;
(2)平面BAC⊥平面ACD;
(3)求点C到平面ABD的距离.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_ST/images3.png)
【答案】分析:(1)利用正弦定理解△BCD,得sinBDC=
,结合∠BDC为锐角得∠BDC=
,由三角形内角和定理算出∠BCD=
,即得DC⊥BC;
(2)利用勾股定理的逆定理,证出AC⊥CD,结合BC⊥CD,从而证出CD⊥平面BAC,利用线面垂直判定定理即可证出平面BAC⊥平面ACD;
(3)利用题中数据证出△ABC为直角三角形,从而算出S△ABC=2
,由锥体体积公式算出VD-ABC=
.再利用解三角形知识算出△ABD的面积,利用等体积转换加以计算即可算出点C到平面ABD的距离.
解答:解:(1)在锐角△BCD中,∠CBD=
,BC=
,CD=2,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/images7.png)
∴由正弦定理
,得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/8.png)
解之得sinBDC=
,结合∠BDC为锐角可得∠BDC=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/10.png)
∴∠BCD=π-∠CBD-∠BDC=
,即DC⊥BC;
(2)在△ACD中,AC=CD=2,AD=
,
得AC2+CD2=8=AD2,所以AC⊥CD
∵BC⊥CD,AC、BC是平面BAC内的相交直线
∴CD⊥平面BAC
∵CD?平面ACD,∴平面BAC⊥平面ACD;
(3)在△ABC中,AC=2,AB=2
,BC=2
,
∴AC2+AB2=BC2,得AB⊥AC
∴S△ABC=
×AB×AC=2![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/16.png)
由(2)知DC⊥平面ABC,故VD-ABC=
×S△ABC×CD=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/18.png)
Rt△BDC中,BD=
=4
在△ABD中,AB=AD=2
,所以AD2+AB2=BD2,故AB⊥AD
故S△ABD=
×AB×AD=4
设点C到平面ABD的距离为h,
可得VC-ABD=VD-ABC,得
S△ABD•h=
,
即
×4×h=
,解之得h=
,即点C到平面ABD的距离
.
点评:本题给出特殊三棱锥,求证线线垂直、面面垂直,并求锥体的体积,着重考查了解三角形的知识,考查了空间垂直位置关系的证明和锥体体积求法等知识,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/2.png)
(2)利用勾股定理的逆定理,证出AC⊥CD,结合BC⊥CD,从而证出CD⊥平面BAC,利用线面垂直判定定理即可证出平面BAC⊥平面ACD;
(3)利用题中数据证出△ABC为直角三角形,从而算出S△ABC=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/4.png)
解答:解:(1)在锐角△BCD中,∠CBD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/images7.png)
∴由正弦定理
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/8.png)
解之得sinBDC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/10.png)
∴∠BCD=π-∠CBD-∠BDC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/11.png)
(2)在△ACD中,AC=CD=2,AD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/12.png)
得AC2+CD2=8=AD2,所以AC⊥CD
∵BC⊥CD,AC、BC是平面BAC内的相交直线
∴CD⊥平面BAC
∵CD?平面ACD,∴平面BAC⊥平面ACD;
(3)在△ABC中,AC=2,AB=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/14.png)
∴AC2+AB2=BC2,得AB⊥AC
∴S△ABC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/16.png)
由(2)知DC⊥平面ABC,故VD-ABC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/18.png)
Rt△BDC中,BD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/19.png)
在△ABD中,AB=AD=2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/20.png)
故S△ABD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/21.png)
设点C到平面ABD的距离为h,
可得VC-ABD=VD-ABC,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/23.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125635740332972/SYS201310251256357403329018_DA/27.png)
点评:本题给出特殊三棱锥,求证线线垂直、面面垂直,并求锥体的体积,着重考查了解三角形的知识,考查了空间垂直位置关系的证明和锥体体积求法等知识,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目